cRGD-functionalized, DOX-conjugated, and ⁶⁴Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging.
نویسندگان
چکیده
Multifunctional and water-soluble superparamagnetic iron oxide (SPIO) nanocarriers were developed for targeted drug delivery and positron emission tomography/magnetic resonance imaging (PET/MRI) dual-modality imaging of tumors with integrin α(v)β₃ expression. An anticancer drug was conjugated onto the PEGylated SPIO nanocarriers via pH-sensitive bonds. Tumor-targeting ligands, cyclo(Arg-Gly-Asp-d-Phe-Cys) (c(RGDfC)) peptides, and PET ⁶⁴Cu chelators, macrocyclic 1,4,7-triazacyclononane-N, N', N″-triacetic acid (NOTA), were conjugated onto the distal ends of the PEG arms. The effectiveness of the SPIO nanocarriers as an MRI contrast agent was evaluated via an in vitro r₂ MRI relaxivity measurement. cRGD-conjugated SPIO nanocarriers exhibited a higher level of cellular uptake than cRGD-free ones in vitro. Moreover, cRGD-conjugated SPIO nanocarriers showed a much higher level of tumor accumulation than cRGD-free ones according to non-invasive and quantitative PET imaging, and ex vivo biodistribution studies. Thus, these SPIO nanocarriers demonstrated promising properties for combined targeted anticancer drug delivery and PET/MRI dual-modality imaging of tumors.
منابع مشابه
Gold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging
A multifunctional gold nanorod (GNR)-based nanoplatform for targeted anticancer drug delivery and positron emission tomography (PET) imaging of tumors was developed and characterized. An anti-cancer drug (i.e., doxorubicin (DOX)) was covalently conjugated onto PEGylated (PEG: polyethylene glycol) GNR nanocarriers via a hydrazone bond to achieve pH-sensitive controlled drug release. Tumor-target...
متن کاملMultifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging.
A multifunctional unimolecular micelle made of a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for cancer-targeted drug delivery and non-invasive positron emission tomography (PET) imaging in tumor-bearing mice. The hyperbranched amphiphilic block copolymer, Boltorn(®) H40-poly(L-glutamate-hydrazone-doxorubicin)-b-poly(ethylene glycol) (i.e., H40-P(LG-Hy...
متن کاملMultifunctional Chitosan Magnetic-Graphene (CMG) Nanoparticles: a Theranostic Platform for Tumor-targeted Co-delivery of Drugs, Genes and MRI Contrast Agents.
Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge....
متن کاملInvestigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells
In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...
متن کاملLomustine Loaded Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folic Acid for Treatment of Glioblastoma Multiforma (GBM)
This study aimed to improve delivery of lomustine as a chemotherapeutic agent and to increase its uptake by U87-MG cancer cells via synthesizes LN-FA-PG-SPIONs (lomustine loaded polyglycerol coated superparamagnetic iron oxide nanoparticles conjugated with folic acid). Nanoparticles were synthesized by thermal decomposition method and characterized using TEM (transmission microscope), FTIR (Fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 17 شماره
صفحات -
تاریخ انتشار 2011